Activation of Heme-regulated Eukaryotic Initiation Factor 2 Kinase by Nitric Oxide Is Induced by the Formation of a Five-coordinate NO-Heme Complex OPTICAL ABSORPTION, ELECTRON SPIN RESONANCE, AND RESONANCE RAMAN SPECTRAL STUDIES*

نویسندگان

  • Jotaro Igarashi
  • Akira Sato
  • Teizo Kitagawa
  • Tetsuhiko Yoshimura
  • Seigo Yamauchi
  • Ikuko Sagami
  • Toru Shimizu
چکیده

Heme-regulated eukaryotic initiation factor 2 kinase (HRI) regulates the synthesis of hemoglobin in reticulocytes in response to heme availability. HRI contains a tightly bound heme at the N-terminal domain. Earlier reports show that nitric oxide (NO) regulates HRI catalysis. However, the mechanism of this process remains unclear. In the present study, we utilize in vitro kinase assays, optical absorption, electron spin resonance (ESR), and resonance Raman spectra of purified full-length HRI for the first time to elucidate the regulation mechanism of NO. HRI was activated via heme upon NO binding, and the Fe(II)-HRI(NO) complex displayed 5-fold greater eukaryotic initiation factor 2 kinase activity than the Fe(III)-HRI complex. The Fe(III)-HRI complex exhibited a Soret peak at 418 nm and a rhombic ESR signal with g values of 2.49, 2.28, and 1.87, suggesting coordination with Cys as an axial ligand. Interestingly, optical absorption, ESR, and resonance Raman spectra of the Fe(II)-NO complex were characteristic of five-coordinate NO-heme. Spectral findings on the coordination structure of fulllength HRI were distinct from those obtained for the isolated N-terminal heme-binding domain. Specifically, sixcoordinate NO-Fe(II)-His was observed but not CysFe(III) coordination. It is suggested that significant conformational change(s) in the protein induced by NO binding to the heme lead to HRI activation. We discuss the role of NO and heme in catalysis by HRI, focusing on heme-based sensor proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonance Raman and EPR of nitrosyl human hemoglobin and chains, carp hemoglobin, and model compounds. Implications for the nitrosyl heme coordination state.

We report the joint resonance Raman (RR) and electron paramagnetic resonance (epr) study of five- and six-coordinate nitrosyl heme model compounds and of the titled nitrosyl hemoproteins. Both epr and RR spectra fall into two types which, in the models, correspond to five- and six-coordinate nitrosyl hemes. However, neither RR nor epr spectroscopy is highly sensitive to the nature of the bond b...

متن کامل

Resonance Raman and EPR of Nitrosyl Human Hemoglobin and Chains, Carp Hemoglobin, and Model Compounds

We report the joint resonance Raman (RR) and electron paramagnetic resonance (epr) study of fiveand six-coordinate nitrosyl heme model compounds and of the titled nitrosyl hemoproteins. Both epr and RR spectra fall into two types which, in the models, correspond to fiveand six-coordinate nitrosyl hemes. However, neither RR nor epr spectroscopy is highly sensitive to the nature of the bond betwe...

متن کامل

The Production of Nitrous Oxide by the Heme/Nonheme Diiron Center of Engineered Myoglobins (FeBMbs) Proceeds through a trans-Iron-Nitrosyl Dimer

Denitrifying NO reductases are transmembrane protein complexes that are evolutionarily related to heme/copper terminal oxidases. They utilize a heme/nonheme diiron center to reduce two NO molecules to N2O. Engineering a nonheme Fe(B) site within the heme distal pocket of sperm whale myoglobin has offered well-defined diiron clusters for the investigation of the mechanism of NO reduction in thes...

متن کامل

Characterization of two different five-coordinate soluble guanylate cyclase ferrous-nitrosyl complexes.

Soluble guanylate cyclase (sGC), a hemoprotein, is the primary nitric oxide (NO) receptor in higher eukaryotes. The binding of NO to sGC leads to the formation of a five-coordinate ferrous-nitrosyl complex and a several hundred-fold increase in cGMP synthesis. NO activation of sGC is influenced by GTP and the allosteric activators YC-1 and BAY 41-2272. Electron paramagnetic resonance (EPR) spec...

متن کامل

Spectral and ligand-binding properties of an unusual hemoprotein, the ferric form of soluble guanylate cyclase.

The soluble form of guanylate cyclase (sGC) is a hemoprotein which serves as the only known receptor for the signaling agent nitric oxide (.NO). The enzyme is a heterodimer in which each subunit binds 1 equiv of 5-coordinate high-spin type b heme. .NO increases the Vmax of sGC up to 400-fold by binding to the heme to form a 5-coordinate ferrous nitrosyl complex. The electron paramagnetic resona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004